

**Company Overview** 

January 2020

### **Forward Looking Statements**

#### **Forward-Looking Statements**

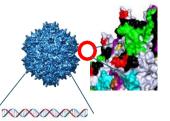
This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this presentation that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding expectations relating to meetings with global regulatory authorities and the FDA, product pipeline, anticipated product benefits, goals and strategic priorities, product candidate development and status and expectations relating to clinical trials, growth expectations or targets and pre-clinical and clinical data expectations in respect of collaborations, as well as statements that include the words "expect," "intend," "plan," "believe," "project," "forecast," "estimate," "may," "should," "anticipate" and similar statements of a future or forward-looking nature. These forward-looking statements are based on management's current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, our incurrence of significant losses; any inability to achieve or maintain profitability, acquire additional capital, identify additional and develop existing product candidates, successfully execute strategic priorities, bring product candidates to market, build-out the manufacturing facility and processes, successfully enroll patients in and complete clinical trials, accurately predict growth assumptions, recognize benefits of any orphan drug designations, retain key personnel or attract qualified employees, or incur expected levels of operating expenses; failure of early data to predict eventual outcomes; failure to obtain FDA or other regulatory approval for product candidates within expected time frames or at all; the novel nature and impact of negative public opinion of gene therapy; failure to comply with ongoing regulatory obligations; contamination or shortage of raw materials; changes in healthcare laws; risks associated with our international operations; significant competition in the pharmaceutical and biotechnology industries; dependence on third parties; risks related to intellectual property; litigation risks; and the other important factors discussed under the caption "Risk Factors" in our most recent quarterly report on Form 10-Q or annual report on Form 10-K or subsequent 8-K reports, as filed with the Securities and Exchange Commission. These and other important factors could cause actual results to differ materially from those indicated by the forward-looking statements made in this presentation. Any such forward-looking statements represent management's estimates as of the date of this presentation. While we may elect to update such forward-looking statements at some point in the future, unless required by law, we disclaim any obligation to do so, even if subsequent events cause our views to change. Thus, one should not assume that our silence over time means that actual events are bearing out as expressed or implied in such forward-looking statements. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this presentation. Unless otherwise stated or the context otherwise requires, the information herein is as of January 9, 2019.

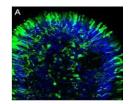


### A Vertically Integrated, Clinical Stage Gene Therapy Company

Developing a new pharmaceutical modality designed for the cost effective treatment of a broad range of serious disorders

Diversified Pipeline of Gene Therapy Candidates


- 6 ongoing clinical programs:
- Inherited retinal diseases
- Salivary gland
- Parkinson's Disease



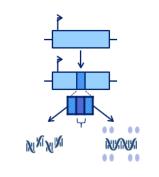



Platform of Core Viral Vector Engineering Capabilities

Viral vector design, promoters, capsid, transgene optimization, process development expertise






### Manufacturing Capacity & Know-How

Flexible and scalable cGMP manufacturing facility with capacity for commercial supply for our programs



Next Generation Gene Therapy Riboswitch-Based Gene Regulation

Proprietary technology that may allow for innovative gene therapy treatments whose expression can be turned on and off with an easily administered small molecule



# cGMP Certified Manufacturing Facility: Flexible and Scalable

### **Central London facility**

- cGMP certified 29,000 sq. ft multi-product, multi-viral vector manufacturing facility
- Designed to meet MHRA, EMA and FDA regulatory requirements
- Single use philosophy / fully enclosed technologies
- 2 cell suites; 3 viral vector suites
- Independent air handling
- Designed for minimal downtime and maximum flexibility
- Adherent / non-adherent cell lines HEK293
- Support laboratories: Quality Control
- Adjacent MSAT (Manufacturing Science and Technology) area/pilot plant

### Expanding manufacturing footprint

 Construction on 2<sup>nd</sup> cGMP viral vector manufacturing facility & cGMP plasmid production facility expected to begin in 2020





### **Gene Therapy Pipeline** Ocular, Neurodegenerative, Salivary Gland Programs



### **Multiple Therapeutic Targets**



#### **Clinical Development**

 Genetic Inherited Retinal Disease (IRD) franchise: XLRP, achromatopsia, RPE65-deficiency, LCA4

#### Research

• Wet AMD, Dry AMD

#### **Gene Regulation**

• VEGFR2 Ab – eye drops



#### **Clinical Development**

Parkinson's disease

#### Research

 Amyotrophic Lateral Sclerosis (ALS)

#### **Gene Regulation**

 CNS expression with BBB penetrant small molecules



#### **Clinical Development**

 Radiation-Induced Xerostomia (Grade 2/3)

#### Research

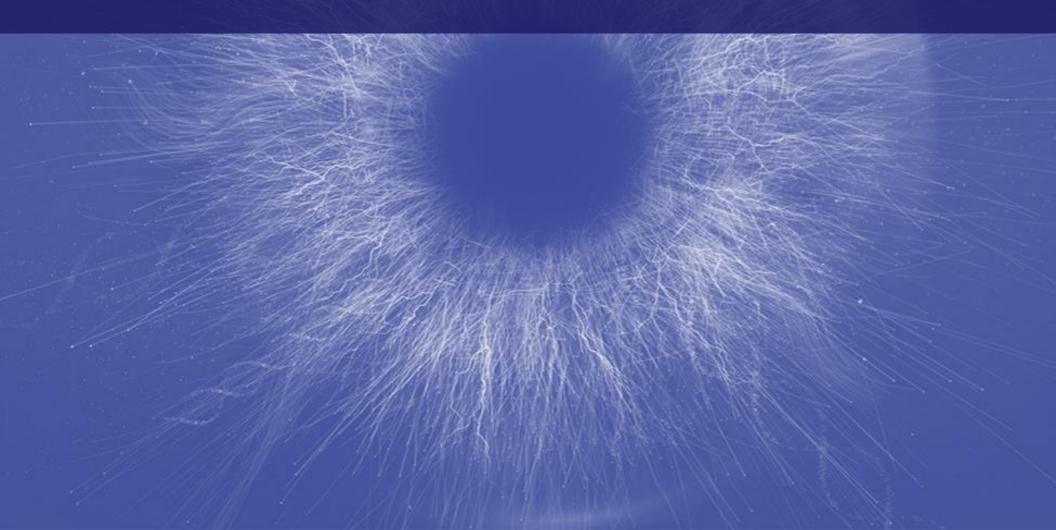
• Sjogren's Syndrome

#### **Gene Regulation**

 Peptide and hormone salivary gland delivery

Human proof of concept demonstrated across ocular, neurodegenerative and salivary gland pipelines

Vector development & optimization technology create opportunities to treat broader indications beyond rare, inherited genetic disorders


### **Broad Clinical Pipeline**

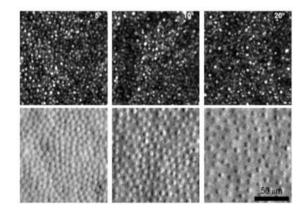
| Product        | Indication                    | Preclinical                | Phase 1/2   | Details                                                             |  |  |
|----------------|-------------------------------|----------------------------|-------------|---------------------------------------------------------------------|--|--|
| Ocular         |                               |                            |             |                                                                     |  |  |
| AAV-RPE65      | RPE65-Deficiency              | RPDD, Orphan Drug          |             |                                                                     |  |  |
| AAV-<br>CNGB3* | Achromatopsia<br>(CNGB3)      | RPDD, PRIME, Fast Track, C | Orphan Drug | Janssen                                                             |  |  |
| AAV-<br>RPGR*  | X-linked RP<br>(RPGR)         | Fast Track, Orphan Drug    |             | Janssen 🕇                                                           |  |  |
| AAV-<br>CNGA3* | Achromatopsia<br>(CNGA3)      | RPDD, Orphan Drug          |             | Janssen                                                             |  |  |
| AAV-AIPL1      | LCA4 (AIPL1)                  | Orphan U.S. & EU           |             | EU Compassionate Use under<br>Specials License                      |  |  |
| A006           | Wet AMD (anti-<br>VEGFR2)     |                            |             |                                                                     |  |  |
| Neu            |                               |                            |             |                                                                     |  |  |
| AAV-GAD        | Parkinson's Disease<br>(GAD)  |                            |             | 45 patient Phase 2 trial complete                                   |  |  |
| Salivary Gland |                               |                            |             |                                                                     |  |  |
| AAV-AQP1       | Xerostomia<br>(hAQP1)         | Orphan Drug                |             | Phase 1 study at NIH ongoing;<br>multi-site Phase 1/2 trial ongoing |  |  |
| AAV-AQP1       | Sjögren's Syndrome<br>(hAQP1) |                            |             |                                                                     |  |  |

\*Co-development program with Janssen Pharmaceuticals pursuant to a collaboration agreement.



## **Ocular Franchise**




### **MeiraGTx Ocular Programs**

|                                                                                     | Ophthalmology Partners and Centers of Excellence                                                                                                                                                                   |  |  |  |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| LUCL<br>INSTITUTE OF<br>OPHTHALMOLOGY                                               | <ul> <li>UCL Institute of Ophthalmology<br/>One of the world's leading research institutes pioneering ophthalmology gene therapy</li> </ul>                                                                        |  |  |  |  |  |
| Moorfields<br>Eye Hospital NHS<br>NHS Foundation Trust                              | <ul> <li>Moorfields Eye Hospital<br/>Provides access to the world's largest catchment of patients with inherited retinal diseases,<br/>well characterized patients, prospective Natural History studies</li> </ul> |  |  |  |  |  |
| KELLOGG EYE CENTER<br>KICHELAN MEDICINE<br>KELLOGG EYE CENTER<br>KELLOGG EYE CENTER | <ul> <li>US footprint through links with University of Michigan Kellogg Eye Center, Massachusetts<br/>Eye and Ear (MEEI), Casey Eye Institute and other leading centers</li> </ul>                                 |  |  |  |  |  |
| CASEY EYE                                                                           | Partnership with Foundation Fighting Blindness (FFB)                                                                                                                                                               |  |  |  |  |  |
| EFIGHTING<br>BLINDNESS                                                              | Global expertise in imaging and validated endpoints in each of our target diseases                                                                                                                                 |  |  |  |  |  |

90

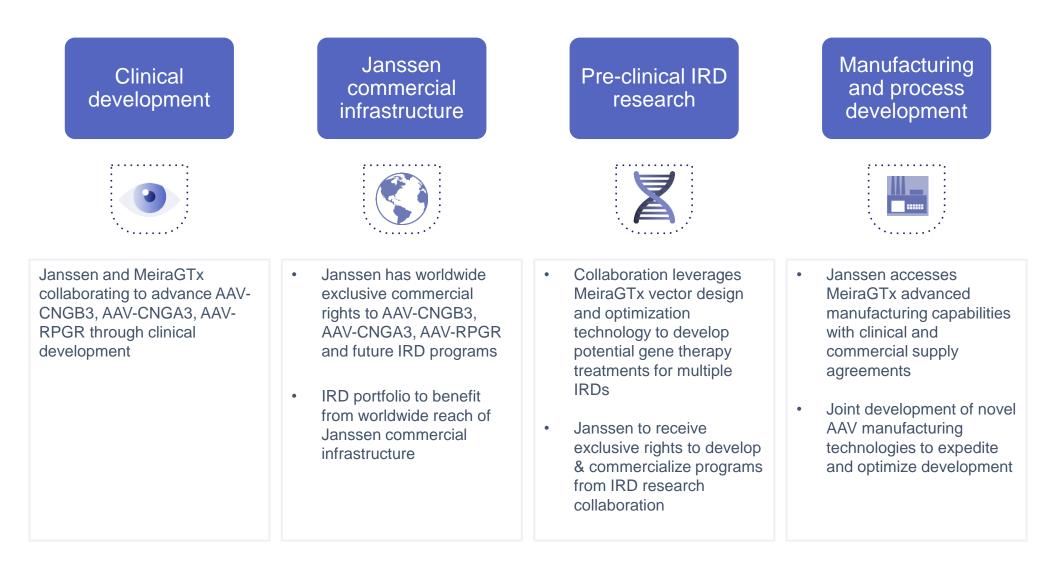
80

#### Our Partners Possess World Leading Imaging, Endpoint Development and Validation



## Patient Accrual Study Results: Stargardt Disease (Example) Eligible Needed

HAN JC. MEN


Dallas GBMC

Take Children and Children and

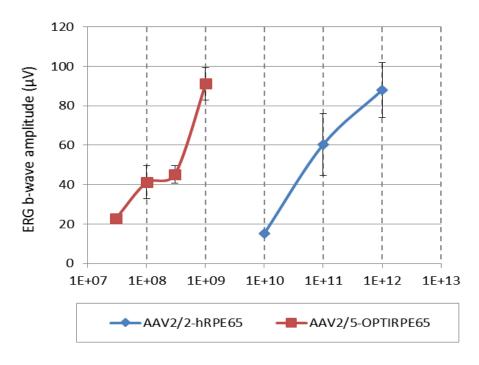
### **Patient Access**

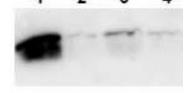
### **Worldwide Strategic Collaboration**



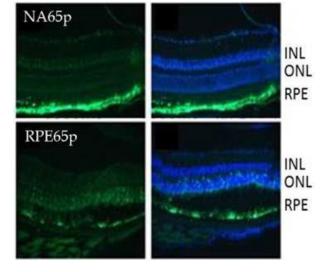


### **AAV-RPE65 Vector Construct Optimization**

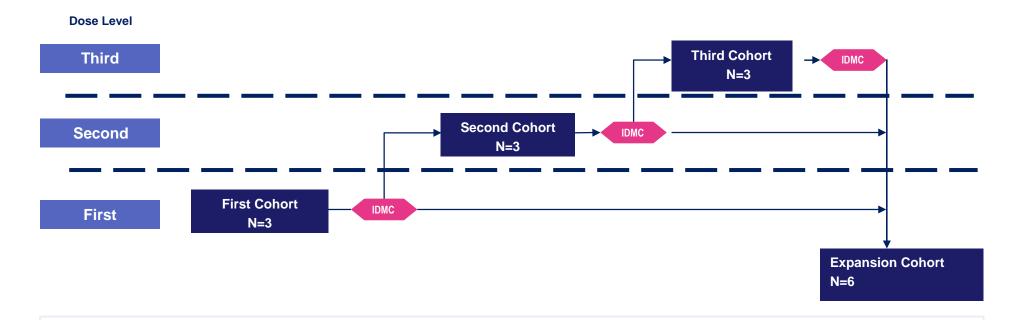

#### **Optimization Details**


- Capsid changed from AAV2 to AAV5: 4x improvement in transfection efficiency of RPE
- **Promoter optimization:** 20x increase in protein expression
- Codon optimization: 7x increase in protein expression in human cells
- SV40 intron increases mRNA stability: 2.5x increased mRNA levels

#### **Head-to-Head Comparison**


#### Head-to-head comparison in vivo of AAV2/5-OPTIRPE65 and AAV2/2-hRPE65, the vector used in the first UCL clinical trial

 After subretinal injection into RPE65-deficient mice, AAV2/5-OPTIRPE65 can restore retinal function at 300-1,000 fold lower doses than AAV2/2-hRPE65






1: AAV. RPE65OPT.GFP 2: AAV. RPE65OPT.GFP (1:20 dilution) 3: AAV.BGL65p.GFP (alt promoter fragment) 4: AAV.hRPE65.GFP Subretinal injection targeting the central retina Volume of injection may be up to 1ml Multiple retinotomies permitted



### Phase 1/2 Trial of AAV-RPE65



- **Dosing complete:** 15 patients treated (nine adults in three dose escalation cohorts and six pediatric patients in an expansion cohort)
- Six-month follow up data presented at AAO Retina Subspecialty Day 2019: AAV-RPE65 was generally welltolerated; statistically significant improvement across several secondary endpoints assessing clinical activity
- Long-term follow up ongoing
- Natural History study ongoing: >30 RPE65-deficiency patients well characterized

### **Topline Data from Phase 1/2 Trial of AAV-RPE65**

| AAV-RPE65<br>Study          | <ul> <li>15 patients treated</li> <li>9 young adults (16-24) across three dose escalation cohorts</li> <li>6 children (5-12) in a pediatric expansion cohort</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Primary<br>Endpoint: safety | <ul> <li>AAV-RPE65 was generally well-tolerated after six months of follow up</li> <li>AAV-RPE65 safety profile consistent with other approved and investigational ocular gene therapies</li> <li>Subretinal injection targeting the central retina, including the fovea, was demonstrated to be well tolerated</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Secondary<br>Endpoints      | <ul> <li>Mobility testing* <ul> <li>Statistically significant improvement in the time taken to navigate a visually-guided mobility maze was demonstrated across the full spectrum of light levels tested</li> </ul> </li> <li>Retinal Sensitivity** <ul> <li>Statistically significant improvement in retinal sensitivity at six months compared to baseline (Octopus 900 full-field static perimetry)</li> </ul> </li> <li>Visual Acuity** <ul> <li>Statistically significant improvement in the ETDRS letter score from baseline to six months</li> </ul> </li> <li>Contrast Sensitivity** <ul> <li>Statistically significant improvement in contrast sensitivity from baseline to six months (Pelli-Robson assessment)</li> </ul> </li> </ul> |  |  |  |

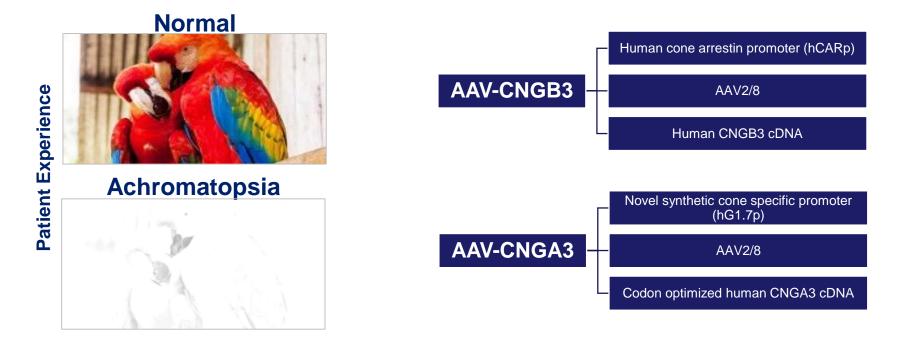
\*Statistical significance demonstrated across entire study (cohort 1, cohort 2, cohort 3, pediatric expansion cohort)

\*\*Statistical significance demonstrated in subset of adults and children treated at 1x10<sup>11</sup> (cohort 1, pediatric expansion cohort)

### AAV-CNGB3 & AAV-CNGA3 for the Treatment of Achromatopsia

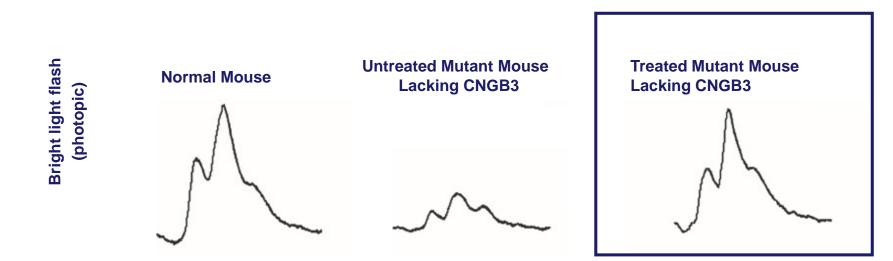
#### Achromatopsia (ACHM)

#### **Retinal defect**

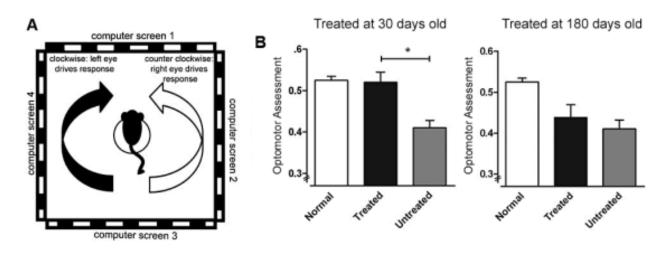

· Complete absence of cone photoreceptor function from birth

#### **Disease characterization**

- Very poor visual acuity from birth (typically 20/200)
- Photophobia (disabling aversion to light)


#### **Prevalence and genes**

- Overall ACHM prevalence is around 1/30,000 in US
- Total patients in US, EU5 and Japan:~24,000
- CNGB3 (~50% of cases), CNGA3 (~40% of cases)




### **AAV-CNGB3** Restored Function in Pre-clinical Models





#### **Restoration of visual function**



Carvalho L. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy, Human Molecular Genetics, 2011, vol. 20.

### Phase 1/2 Trials of AAV-CNGB3 and AAV-CNGA3

### Achromatopsia Clinical Development Program

### CNGB3 dosing complete: 23 patients treated

- 11 adults in dose escalation cohorts
- 12 children in pediatric expansion cohort)

### CNGA3 clinical trial ongoing: Enrolling children aged 3-15 years old

- Dose escalation in progress
- Trial initiated Q3 2019

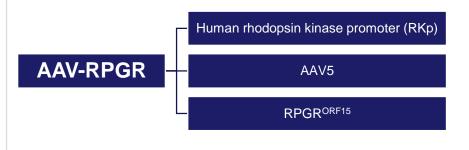
### ACHM Natural History study ongoing

• > 90 patients well characterized

### AAV-RPGR for the Treatment of X-Linked Retinitis Pigmentosa due to RPGR-Deficiency

#### **XLRP**

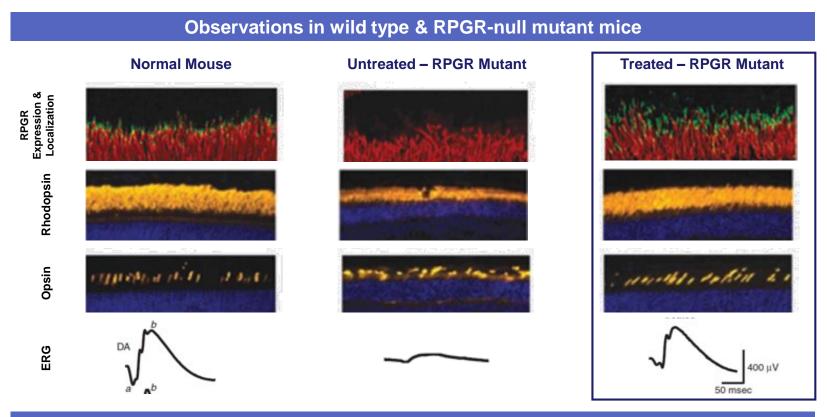
#### **Retinitis Pigmentosa (RP)**


- Group of IRDs which represents the most common genetic cause of blindness
- X-linked RP is the most severe form of RP and accounts for 10-15% of RP patients

#### **Disease progression**

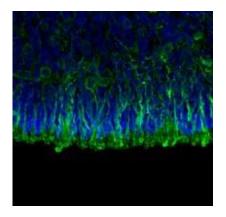
- · Loss of night vision
- Progressing into tunnel vision
- Blindness in 4th decade

#### **Prevalence and genes**


- ~1/40,000
- Total patients in US, EU5, Japan: ~20,000

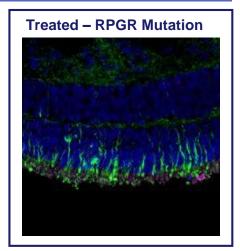


#### **Patient Experience**




### **AAV-RPGR Pre-clinical Data**




#### **Observations in retinal organoids derived from RPGR Patients**

Normal



**Untreated – RPGR Mutation** 

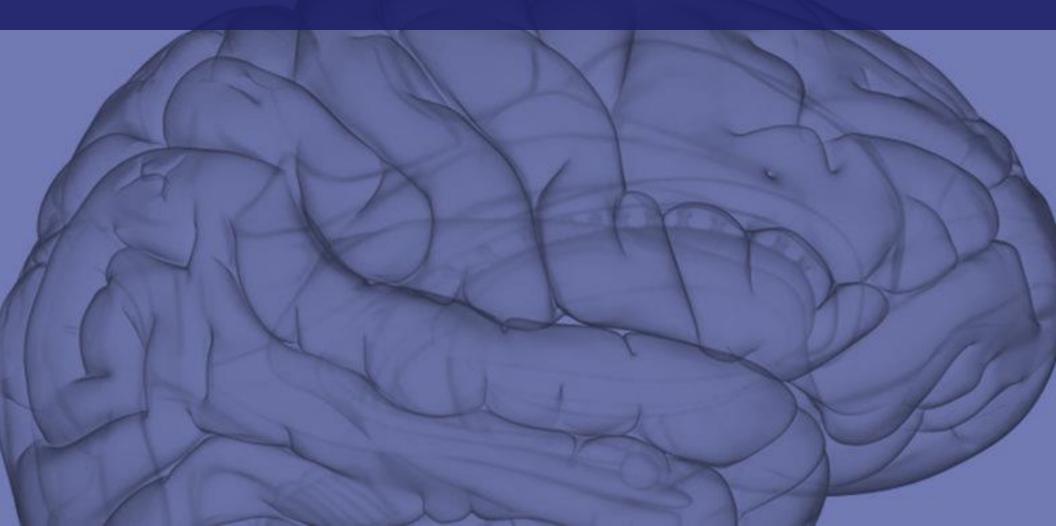




### Phase 1/2 Trial of AAV-RPGR

### **XLRP Clinical Development Program**

### Dose escalation complete


- 10 young adults (aged 18-30) treated in dose escalation
- 3 children treated in pediatric expansion cohort

### Randomized, controlled extension study ongoing

- Enrolling patients in the UK and U.S.
- Natural History study ongoing
  - > 100 XLRP patients well characterized



## **AAV-GAD** for Parkinson's Disease



### **Medical Needs of Parkinson's Disease Patients Today**



### Progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons involved in motor control

- ~1M U.S. patients
- >6M patients globally
- Disease progression and motor symptoms associated with major increase in costs and decline in QoL



### Large number of patients have symptoms refractory to medication adjustments

- Wearing off 40-60% by 6 years after therapy initiation
- Levodopa-induced dyskinesia (LID) 40% by 6 years after therapy initiation
- Motor fluctuations 40% by 6 years of treatment



## Large unmet medical need exists to better manage motor symptoms as PD progresses

- DBS is effective, but still limited in penetration after 20 years
- High rates of non-adherence to high dose anti-Parkinsonian medications and high rates of DBS follow-up procedures and complications

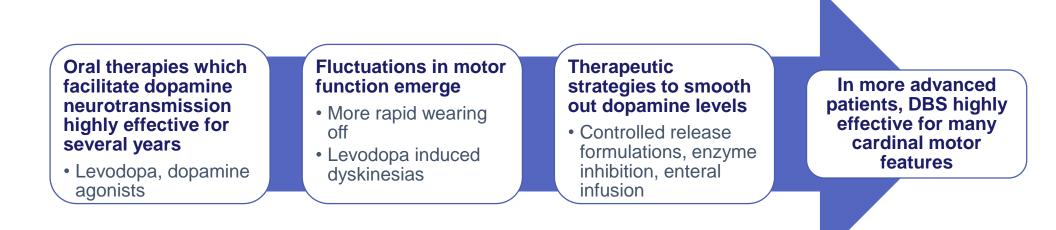
Dorsey ER. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–953.

Marras C. Prevalence of Parkinson's disease across North America. npj Parkinson's Disease. 2018; 4:21

Lewin Group Report on "Economic Burden and Future Impact of Parkinson's Disease" 2019.

Kaltenboeck A. Direct costs and survival of Medicare beneficiaries with early and advanced Parkinson's disease. Parkinsonism and Related Disorders. 2012; 18(4):321-6.

Dodel RC. Health-related quality of life and healthcare utilisation in patients with Parkinson's disease: impact of motor fluctuations and dyskinesias. Pharmacoeconomics. 2001;19(10):1013-38


Ouma S. The Risk Factors for the Wearing-off Phenomenon in Parkinson's Disease in Japan: A Cross-sectional, Multicenter Study. Int Med. 2017; 56. 1961-1966.

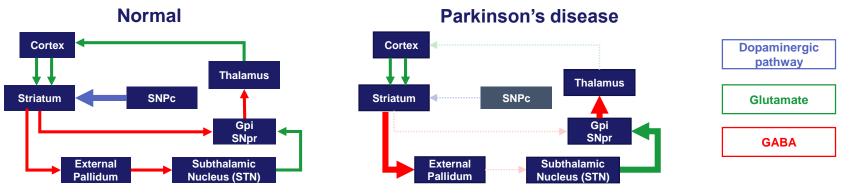
Ahlskog JE. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 2001; 16: 448-458.

Fleisher JE. Medication nonadherence in Parkinson's disease. Curr Neurol Neurosci Rep. 2013; 13(10):382.

Dahodwala. Medication adherence and discontinuation in a national cohort of Medicare beneficiaries with Advanced Parkinson's Disease. Neurology. 2019; 92 (15 Supplement)

### Rationale to Go Beyond a Dopamine Strategy When Levodopa and Equivalents Fail




### Physiological dopamine release in the putamen is synaptic and regulated

- Dopamine neurons show tonic and burst firing
- Dopamine from cell transplants or dopamine synthetic enzyme gene transfer leads to nonphysiological release
- Biological strategies to directly deliver dopamine into the putamen/caudate have been
  unsuccessful in past blinded controlled studies
  - Severe, disabling and difficult to treat dyskinesias have resulted from such approaches
- Pharmacological treatment with levodopa and DA agonists leads to changes in receptor function which make a dopamine strategy as the disease advances challenging

### **AAV-GAD for Parkinson's Disease**

#### Persistent activation of STN in Parkinson's disease

- Dysregulation of basal ganglia signaling in PD with substantia nigra pars compacta (SNPc) degeneration
- Reduced GABA inhibitory input results in persistent activation of the STN
- The STN acts through the major basal ganglia output nuclei to put a brake on the thalamus
- AAV-GAD to the STN relieves this brake, enabling restoration of thalamic and cortical activity to improve motor function



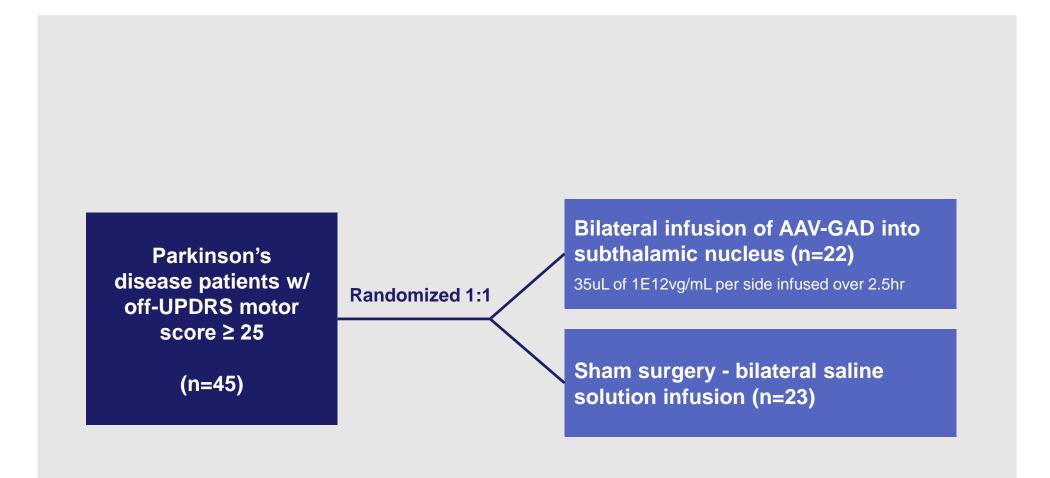
#### AAV-GAD gene therapy to rebalance excitation and inhibition in key nuclei

### <u>G</u>lutamic <u>Acid</u> <u>D</u>ecarboxylase converts glutamate (excitatory neurotransmitter) into GABA (inhibitory neurotransmitter)

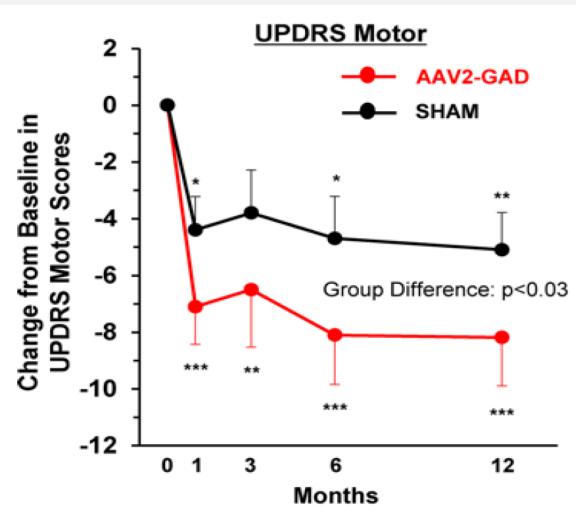
- Delivered directly into the STN, bypassing circuitry disrupted by dopamine loss
- AAV-GAD converts some STN neurons to inhibitory phenotype
  - Reduce STN activity
  - Normalize neuronal firing
  - Normalize basal ganglia outflow to the motor cortex



### Phase 1 Study of AAV-GAD STN Gene Therapy


- ✓ Unilateral STN AAV-GAD was safe and well tolerated
- No evidence of induction immune response or effect on outcome of pre-immunity in two patients
- ✓ Significant improvement in both "off" and "on" UPDRS largely limited to hemibody opposite treated hemisphere
- ✓ Effects seen starting at 3 months (trend at 1 month) and stable to one year
- ✓ No decline in neuropsych scores or other non-motor parameters

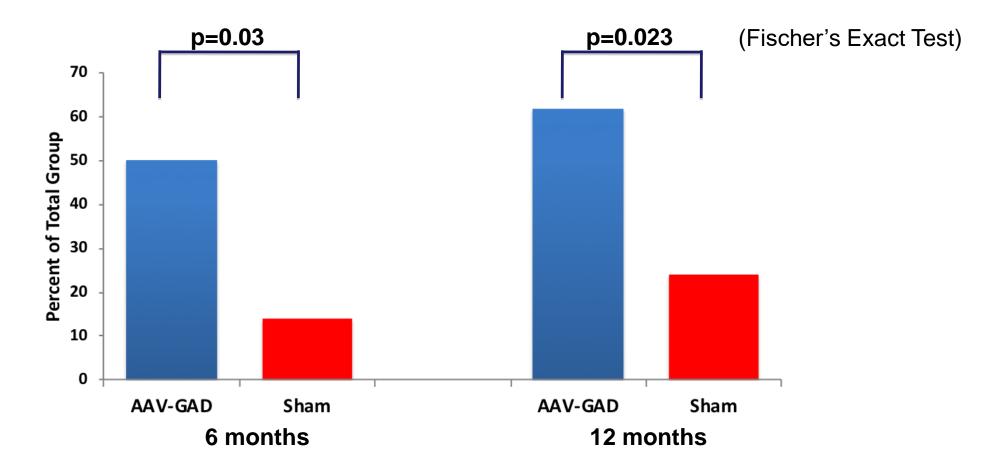





Kaplitt MG. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet. 2007;369:2097-2105

### Randomized, Double-Blind, Sham-Surgery Controlled Phase 2 Trial of AAV-GAD



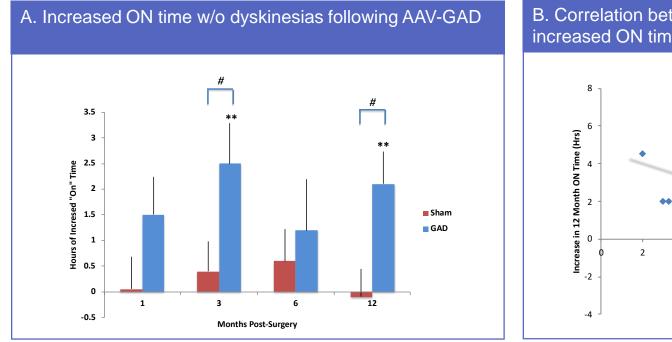

# Primary Outcome Measure: Change in UPDRS Part 3 (Motor Score)



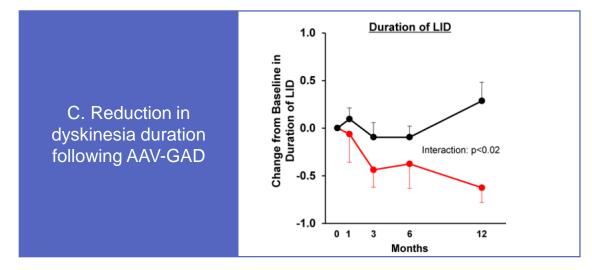
Greater improvements observed in the AAV-GAD treatment group over all follow-up time points

Group effect: p < 0.03; 2 × 5 RMANOVA; \*p < 0.05, \*\*P < 0.01, \*\*\*p < 0.001, post-hoc Bonferroni tests relative to baseline

### **UPDRS Part 3 Clinically Meaningful Responder Rate**




### Clinically meaningful response<sup>1</sup>


- <u>></u>9 point reduction in UPDRS Part 3 "off" scores
- Approximately 25% improvement in UPDRS Part 3 "off" scores
- Well above moderate clinically important difference (4.5-6.7 points) and close to large clinically important difference (10.7-10.8 points)<sup>2</sup>

1. Niethammer M. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson's disease. JCI Insight. 2017; 2(7):e90133 2. Shulman LM. The clinically important difference on the unified Parkinson's disease rating scale. Arch Neurol. 2010; 67(1):64-70

### **Increased ON Time Without Dyskinesia**



Overall change in ON time GAD vs. sham p=0.044 (ANOVA)



Niethammer M. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson's disease. JCI Insight. 2017; 2(7):e90133

٠

8

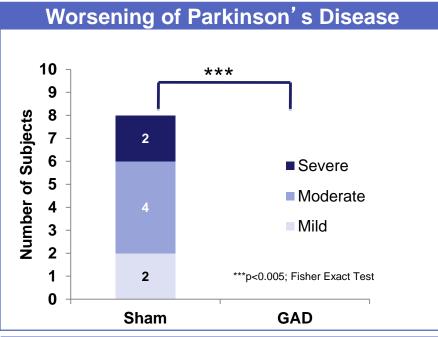
**Baseline ON Time (Hrs)** 

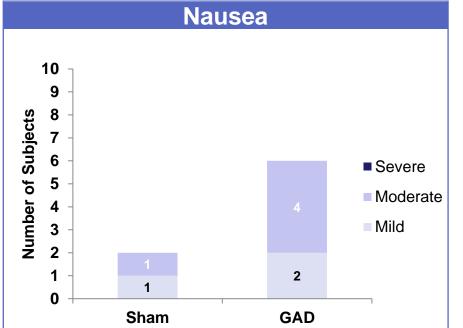
6

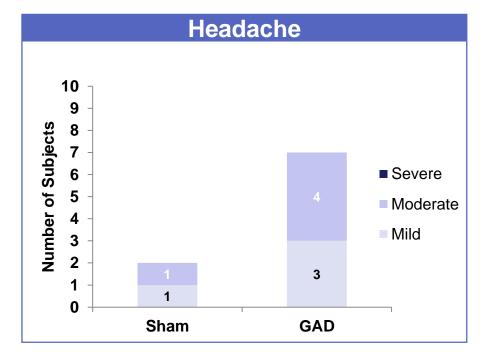
٠

10

12


14


16


18

r= -0.59

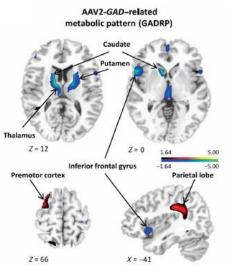
# Adverse Events Over 12 Months (20% or Greater Frequency)



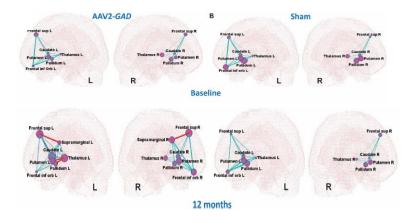




| Serious Adverse Events*<br>(Number of Subjects)      |      |     |  |  |  |
|------------------------------------------------------|------|-----|--|--|--|
|                                                      | Sham | GAD |  |  |  |
| Intestinal obstruction                               |      | 1   |  |  |  |
| Accidental drug overdose                             |      | 1   |  |  |  |
| Prostatitis                                          |      | 1   |  |  |  |
| Delusion, Hallucination<br>Parkinson's Disease worse | 1    |     |  |  |  |


\*All SAEs occurred 4-12 months post-surgery and all resolved

### **Metabolic Imaging Identified Biomarker of Activity**


### AAV-GAD reduces PD symptoms by reorganizing brain connectivity

- Metabolic imaging at baseline, 6 and 12 months
- AAV-GAD recipients developed unique treatmentdependent polysynaptic brain circuit (GAD related pattern, GADRP)
- GADRP reflects formation of new polysynaptic functional pathways linking the STN to motor cortical regions
- Statistically significant correlation between improvement in UPDRS motor ratings and GADRP expression (p< 0.009)</li>

#### This treatment-induced brain circuit is a novel endpoint to isolate true treatment-driven responses from placebo responses



Decreased metabolic activity in striatum and thalamus Increased metabolic activity in premotor cortex



New polysynaptic pathways connecting STN to motor cortex

Niethammer M. Gene therapy reduces Parkinson's disease symptoms by reorganizing functional brain connectivity. Science Translational Medicine, 2018.

### **Summary of Key AAV-GAD Features**

### ✓ AAV-GAD is the only gene or cell therapy:

- To meet primary clinical efficacy endpoint in a randomized, blinded multi-center PD trial
- With an imaging biomarker supporting efficacy which correlates with clinical outcome
- With a routine and brief surgical procedure that requires minimal OR time, virtually no special training, no general anesthesia
- Improvement in off-medication clinical ratings, ON time without dyskinesia and complications of medical therapy without declines in neuropsychological function or speech
- Consistency in clinical outcomes and imaging from phase 1 to phase 2
- AAV-GAD could be accessible to more patients than current standard of care
  - Absence of retained hardware
  - No need for specialized post-op care
- Non-dopaminergic strategy
  - AAV-GAD potentially applicable to large patient population not adequately treated with currently available therapies



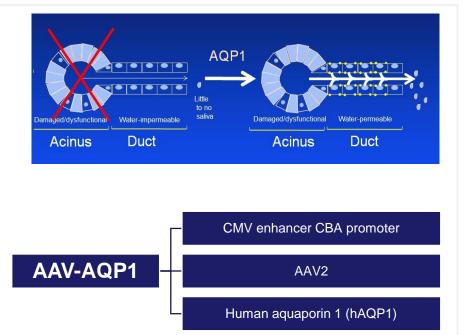


# Salivary Gland



### **AAV-AQP1** for Radiation-Induced Xerostomia (RIX)

#### Significant unmet medical need: xerostomia persisting >2 years after radiation therapy for oral cancer


- 170,000 existing patients in the U.S.
- 50,000 new cases of head and neck cancer/yr treated in US
- 85% of radiation-treated patients experience reduced saliva production, of whom 40% have persistent Grade 2/3 RIX
- Serious, debilitating complications: dental caries, enamel erosion, oral infections, sleep disturbances, difficulty talking, chewing, swallowing, weight loss and malnutrition

### Strategy for the repair

- Water-impermeable duct cells generate an osmotic gradient (lumen > interstitium)
- Introduction of human aquaporin 1 gene (hAQP1) into duct cells via viral vector, making duct cells permeable to water
- Allows water to flow into the salivary duct and out to moisten the mouth

#### Salivary gland as target for gene therapy

- Non-invasive: allows local administration and avoids systemic exposure
- Isolated and encapsulated
- Small volume of vector

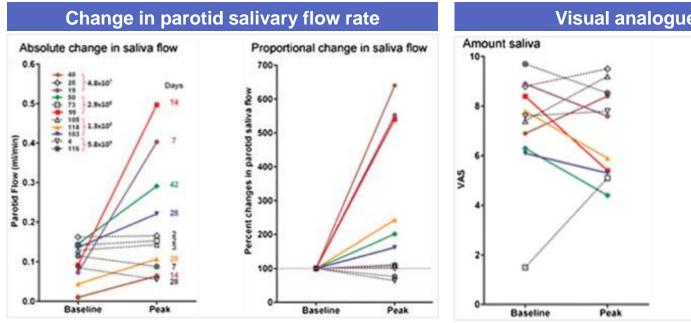


### Human Proof-of-Concept Established: Phase 1 trial of AdhAQP1

#### Adenoviral-mediated aquaporin-1 cDNA transfer for radiation-induced salivary hypofunction

- AdhAQP1 treatment was well tolerated: no SAEs .
- Responses seen in 2 of 3 patients in each of the first 3 cohorts .
- 60% to 540% increase in parotid flow in responding patients .
- 5 of 6 patients also reported subjective improvement in symptoms •




National Institute of Dental and Craniofacial Research

Dry mouth

SAV e

2

Baseline



#### Visual analogue scale (VAS)

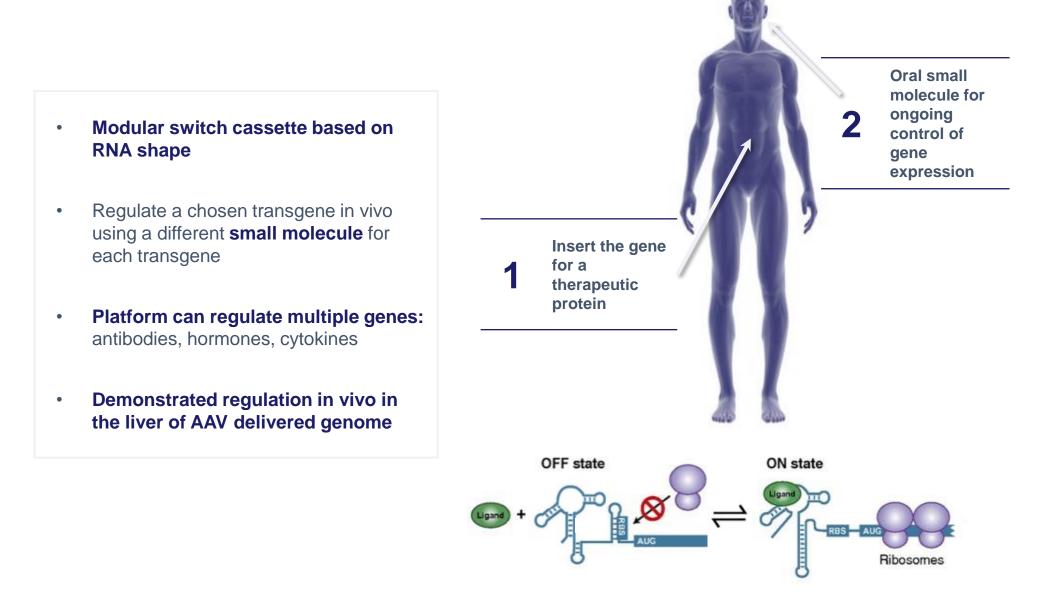
Baum BJ et al. PNAS, 2012.

Peak

### **AAV-AQP1 Clinical Trials Ongoing**

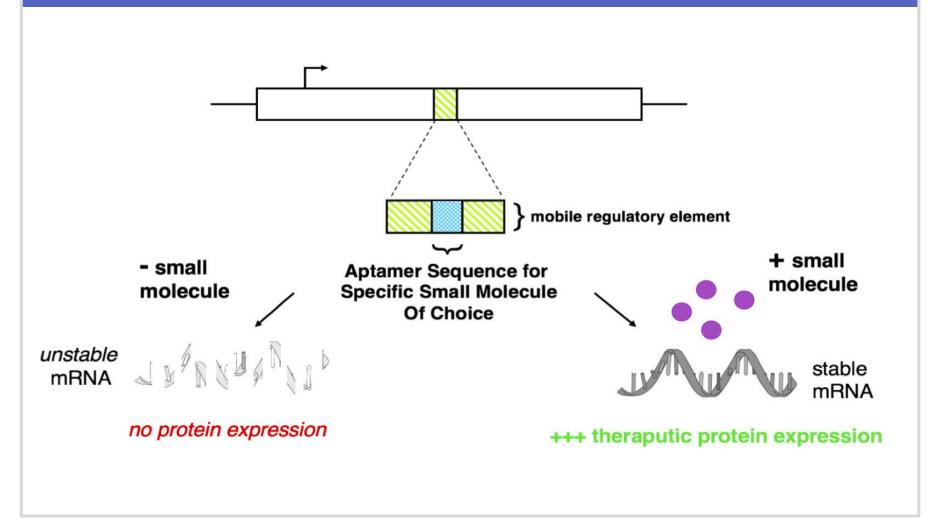
AAV-AQP1 in patients with grade 2/3 xerostomia following IR for oral cancer To determine Vector Dose Dose AAV2hAQP1 eligibility (Viral Particles per Gland) Group \*0 3 X 10<sup>9</sup> National Institutes 1 1 X 10<sup>10</sup> of Health 2 3 X 10<sup>10</sup> 3 1 X 10<sup>11</sup> 4 3 X 1011 123 1428 56 90 150\*360 F/U 1-4 Study Day 5 6 X 1011 Pre 2 Pre 1 <14d <3m

• **Primary endpoint:** safety

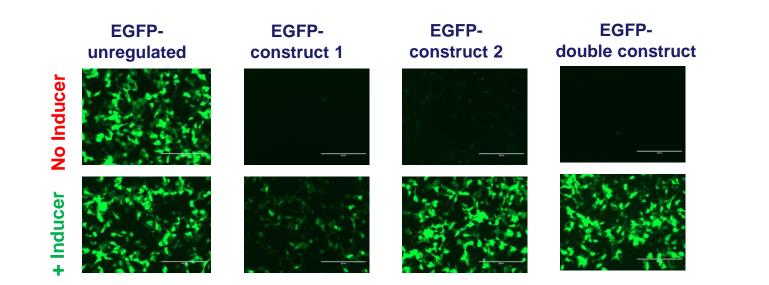

- Secondary endpoint: parotid gland salivary output
- Dose escalation ongoing
  - Single-site Phase 1 trial at NIH
  - Multi-site Phase 1/2 trial initiated Q3 2019

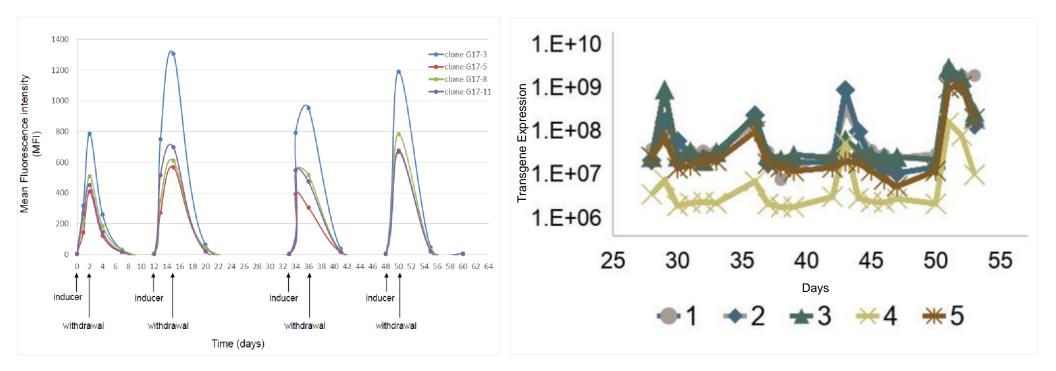


# **Gene Regulation**




# Next Generation Gene Therapy: Gene Regulation Platform





### **Regulation of Transgenes using Proprietary Riboswitch Technology**

Regulation driven by specific small molecule / RNA binding driving functional changes in RNA configuration, splicing and translation



### **Regulation of Transgene Expression**





